神秘的文字(2008)

出自KMU Wiki

在2008年5月7日 (三) 15:07由Norlan (對話 | 貢獻)所做的修訂版本
跳轉到: 導航, 搜索

2008 年 5 月 1 日「閱讀心理學」分組討論摘要。

目錄

第一組

成員列表

kmu web2.0 id : zzadjin, stramonium, norlan

討論摘要

我們已經擁有阿發文的辭典可以辨認阿發文的詞,但卻無法了解阿發文的意義。為了辨認出一篇阿發文的文章,我們必須要從找出詞開始。比如說soshewasconsideringinherownmind這樣的一連串字母所呈現出來的長句。

最短單詞辨識法
人腦認知歷程:

1. 首先我們會從第一個字母開始算二十個字母來找尋裡頭最短有意義的單詞,一旦找不出有意義的詞則從第二個字母開始一樣是二十個字母,以此類推直到找到有意義的單詞為止。如此例子是從字母s開始,我們可以從字典裡s開頭在此長句中最短有意義的詞為so。一但辨認出so之後便結束第一次的搜尋。下次的開始為s,這次開始便是s→sh→she,因為she為詞典中為最短有意義的詞。

2. 因為我們是考慮最短有意義的詞,當辨認出consider之後,下次開始的單字為i,因為從i開始往後推算在詞典中並沒有找到有意義的詞彙,以此推算會發現ing此三個字母並無法找到有意義的詞,直到在ing之後的i開始會出現in此有意義的短詞,因此ing便會被我們給省略。而上面那長句則會被我們辨識成為如下的樣子:so/she/was/consider(ing)/in/her/own/mind

運用最短字詞辨識的方法會遺漏掉許多的字母,針對了解通盤文章的意義解釋會有極大的誤差,估計正確率大約不會超過百分之三十。

最短單詞辨識法〈改良法〉
因為使用最短單詞辨識會有大量的遺漏字母,對於文章的了解幫助並不大,為了改善遺漏的字母我們針對一開始的辨識法有些許的改善法。再以butyoumightcatchabat當作例子。

人腦認知歷程:

同樣的我們使用上面提過的方式來辨認,會變成以下的情形:but/you/might/cat(ch)/a/bat。

改良方式:我們把遺漏的字母先往前與前面的詞結合,看能不能成為一個新詞,如果不行再向後尋找。如果真的都沒辦法與前後的詞相結合,則只能當作是獨立出來的無意義的字母群。所以我們再回來看butyoumightcatchabat這個長句,我們可以看到cat之後的ch在最短單詞辨識法裡ch會被遺漏,如果使用改善的方式我們則可發現ch往前可以與cat合併成為有意義的詞,會變成catch此有意義的詞。則新的長句會變成如下:but/you/might/catch/a/bat。

再來看一個句子andfortunatelywasjustintimetoseeitpopdownalargerabbitholeunderhthedge

改良前:and/for(tunately)/was/just/in/time/to/see/it/pop/down/a/large/rabbit/hole/under/the/edge

改良後:and/fortunate(ly)/was/just/in/time/to/see/it/pop/down/a/large/rabbit/hole/under/the/edge

從這裡我們可以看到即使運用了改良法還是會有遺漏的情形出現,因為我們是以最短有意義的詞為基準,所以事實上應該是fortunately才是符合原意的詞我們並無法辨認出來。

而另一個更重要的問題是我們無法解決一個詞是由兩個詞所組成的情況。比如說together這個詞如果出現在文章中,依我們的方法我們會辨認為to/get/her,而不是together這整個詞的意義。

電腦程式程序:

(1) 先設定最短字串長度為 20 個字元,先將第一個暫存的 20 個字母當作第一階段的處理內容。


例如:以附件中第五大段中,therabbitholewentstr 會成為第一階段的處理內容。

(2) 將第一階段中從第一個字元由左至右逐一增加與資料庫(詞典,以下均以資料庫稱之)比對,當比對出最短(最簡單)單詞後即停止此階段作業。

例如:在 therabbitholewentstr 中,從 t 開始由左至右逐一增加比對可先找到最短單詞為 the,至此即停止第二階段作業。

(3) 當第二階段處理完畢後,將扣除以比對出的最短單詞字元,並從其後重新搜尋 20 個字元作為第三階段的處理內容。

例如:在 therabbitholewentstr 中,the 已經在第二階段被成功處理過即扣除這三個字元,從 r 往後暫存尚未處理的 20 個字元作為新的處理內容,即 rabbitholewentstraig。

(4) 重複 (1) 至 (3) 的處理程序直到所有同一段落中字元均處理完畢。

(5) 在新的段落中重複 (1) 至 (4) 的處理程序直到文章所有段落中字元均處理完畢。

特殊的處理設定:

1. 不區分大小寫。

2. 段落處理的部分將段落中所有文字視為一個最大長度字串,不以紙本上所呈現的行列方式作為一個段落處理。

例如:以附件中第七段而言,將 wellthought .... boutit 視為一完整的段落,從中進行上述 (1) 至 (3) 的處理。

3. 當處理過程中遭遇特殊標點符號例如引號或者括號的第一個符號時,將其所包含的字元獨立進行 (1) 至 (3) 處理直到所包含的字元均處理完畢。

例一:以附件中第六段而言,段落後段會遇到 'ORANGEMARMALADE',則將引號中所包含的字元獨立處理。
例二:以附件中第七段而言,一開始就有一個引號開頭,則自動往後搜尋引號的結尾,將其中包含的 well 四個字元另外暫存並獨立處理。

4. 當在 (1) 的處理過程中遭遇字句段落符號如逗號、頓號、句號、分號等,即使搜尋未能滿足最短字串長度,仍停止向後繼續搜尋增加至 20 個字元。

例如:

第二組

成員列表

鄭立順、劉純瑜、陳維倫、廖奕翔 、何恭年



討論摘要

我們有三種分詞的方法,分別為「找最短詞法」、「找最長詞法」、「類字典法」,以下分述之。


(一)找最短詞法


       我們先假設「阿發文」字典本身是一本記錄了所有阿發文的字詞,也依照阿發文字母的順序先後排好,就像是英文字典一樣,A後面排列的是B,接著是C,直到Z。以presentlyshebeganagain.”Iwonderifishallfallrightthroughtheearth!為例說明:


1. 以每一段第一句的第一個字母開始查詢「阿發文」字典,以上面的文字為例,首先先查第一個字母”p”,在字典中p並不是一個字詞,因此加上第二個字母r,查詢”pr”, 而”pr”也不是一個字詞,所以再加上第三個字母”e” 查詢”pre”。依照這樣的規則,直到可以在字典找到相同的字詞,當查詢”present”時,可以在字典中找到這個字詞,因此字串就在這裡分開,下一個字詞以"l"為字首。


2. 以"l"為字首,重覆基本的查詢方式,當我們增加字母到"lys"時,我們會發現"lys"後面可以加上其他字母,成為一個字詞。但是以"lysh"去查詢時便找不到這個字詞,此外字典裡的字詞是依照字母順序排列,因此不論"lysh"後面加上任何一個字詞,我們都無法在字典找到。所以我們便不再依照字串的順序找下去。我們改以回到在”present”後面加上"l"來查詢字典。查詢”presentl”時,可以知道它也不是一個字詞,因此再加上”y”來查詢,在字典裡可以找到”presently”,因此就在這裡將字串分開。下一個字詞以”s”開始。


3. 依照同樣的方式可以找到接下來的字詞是”she/be/gan/a/gain”。


4. 所以這一句就是presently she be gan a gain.


5. 但這裡會遇到問題,遇到的問題是如果我們以最短的詞下去做分詞的動作會有一些詞、字被我們拆開成短字詞連接再一起這會與原本詞所代表的意思 不同,例如上一句,我們就會把Began看成be / gan 就失去原來的意義。


6. 因此,我們使用的這個方法分詞,之後要了解詞義或是整段句子正確率可能不會太高。預估大約只會有三成左右


(二)找最長詞法


以presentlyshebeganagain. iwonderifishallrightthroughtheearth! 為例說明:


1. 以第一個字母開始查詢,當查到present會成詞,但我們仍繼續查詢,然後會發現presently也成詞。這時候依然繼續查,因為字典是按照順序排列,因此找不到presentlys這個詞,所以我們找到的最長的詞就是presently。


2. 接下來從s開始查,最長的詞是she,因為sheb不成詞,再往下查也查不到更長的詞了(假設字典有按照字母順序排列),所以我們可以說she是最長的詞。依照此規則,此句會變成:presently ahe began again.



(三)類字典法

第三組

成員列表

(填寫於此處。)

討論摘要

(填寫於此處。)

第四組

成員列表

陳慶民、陳怡柔、李奇勳、莊佩伊

討論摘要

在查詢一個字之前,我們先要求使用者輸入整個單字的字母數,將整個單字分為短詞(1~3個字母)、中詞(4~9個字母)和長詞(10個字母以上),再使用類似電子辭典的方式,依照字母排列順序逐步查出單字。

例如 therewasnothingsoveryremarkableinthat,先用長詞判斷,則超過10字母以上沒有單字。故可判斷需用短詞或中詞。在用短詞的狀況下,則會區分出the這個詞,但後面的rewasnothingsoveryremarkableinthat則不論用短詞、中詞或長詞都無法判斷出新的單字,故應採用中詞來判斷,則可區分出there這個詞。再來句子變成wasnothingsoveryremarkableinthat,再一次判斷是短詞、中詞或長詞,則可辨識出was這個詞,依此方法逐步辨識整個句子。估計此可辨識出約80%~90%的詞。