第十一講:Sound,the Auditory System,and Pitch Perception
出自KMU Wiki
在2011年12月4日 (日) 17:30所做的修訂版本 (編輯) 98007021 (對話 | 貢獻) ←上一個 |
在2011年12月9日 (五) 21:25所做的修訂版本 (編輯) (撤銷) 98007013 (對話 | 貢獻) 下一個→ |
||
第1行: | 第1行: | ||
- | + | ===Hearing的重要性=== | |
- | + | *人類在各類辨識中常用的手段 | |
- | 聽,誰在講話? | + | **聽,誰在講話? |
- | 聽,誰的拖鞋聲? | + | **聽,誰的拖鞋聲? |
- | 更廣範圍的定位 | + | *更廣範圍的定位 |
- | 我們可以聽到360度的聲音 | + | **我們可以聽到360度的聲音 |
- | 也可以聽到我們「看不到」的地方的聲音 | + | **也可以聽到我們「看不到」的地方的聲音 |
- | + | ===聲音與情緒=== | |
- | + | *粉筆與黑板急速磨擦 | |
- | 受不了 | + | **受不了 |
- | 小溪流水聲 | + | *小溪流水聲 |
- | 讓人平靜 | + | **讓人平靜 |
- | 知覺老師上課聲 | + | *知覺老師上課聲 |
- | 讓人睡著 | + | **讓人睡著 |
- | + | ===人、聲音與環境=== | |
- | + | *與環境互動 | |
- | 先注意聲音、再察覺影像 | + | **先注意聲音、再察覺影像 |
- | 與人互動 | + | *與人互動 |
- | + | **有聲音的互動效率較高 | |
- | + | [http://youtu.be/cwc-uaN7VFk 聲音影響我們的四種方式Julian Treasure] | |
- | + | ||
- | + | ===視力障礙者之聽覺=== | |
- | + | *優於視力正常者 | |
- | 課本p.260 弱視者之經驗� | + | **課本p.260 弱視者之經驗� |
- | 特殊案例:Helen Keller | + | *特殊案例:Helen Keller |
- | Blindness isolated her from things, but deafness isolated her from peoples. | + | **Blindness isolated her from things, but deafness isolated her from peoples. |
- | + | ===波=== | |
- | + | Figure 11.1 | |
- | + | ===Sine wave=== | |
- | + | Figure 11.2 | |
- | + | ===波的能量=== | |
- | + | Figure 11.3 | |
- | + | ===聲音的能量計算法=== | |
- | + | *dB = 20 X log (p/p0) | |
- | p0 = 20 microPascals | + | **p0 = 20 microPascals |
- | sound pressure level (SPL) | + | *sound pressure level (SPL) |
- | 若p = 200 | + | **若p = 200 |
- | 則 dB = 20 X log (p/p0)= 20log(200/20) | + | **則 dB = 20 X log (p/p0)= 20log(200/20)= 20log(10) = 20 |
- | + | ===table11.1=== | |
**與p0相對大小 dB<br> | **與p0相對大小 dB<br> | ||
1 0 <br> | 1 0 <br> | ||
第69行: | 第68行: | ||
- | + | ===聲音的頻率=== | |
- | + | Figure 11.4 | |
- | + | ===複雜的聲音=== | |
- | + | Figure 11.5 | |
- | + | ===missing fundamental=== | |
- | + | Figure 11.6 | |
- | + | ===Loudness=== | |
- | + | Figure 11.7 | |
- | + | *音量每增加10分貝,我們會覺得音量增大了2倍 | |
+ | ===tone chroma=== | ||
+ | Figure 11.8 | ||
+ | *不同的tone height,相差了一個octave,同時頻率也呈倍數增加 | ||
- | *tone chroma | ||
- | **Figure 11.8 | ||
- | **不同的tone height,相差了一個octave, | ||
- | 同時頻率也呈倍數增加 | ||
+ | ===頻率與音強=== | ||
+ | *在2000~4000Hz是我們最敏感的頻段;中間兩條線是在不同頻率下,我們感受相同音量的強度;最上面一條線是讓我們感受到不舒服的強度,超過這個強度可能會造成聽力受損。 | ||
+ | *衛教 | ||
+ | **耳機、隨身聽音量一定要放小聲 | ||
- | *頻率與音強 | ||
- | **在2000~4000Hz是我們最敏感的頻段;中間兩條線是在不同頻率下,我們感受相同音量的強度;最上面一條線是讓我們感受到不舒服的強度,超過這個強度可能會造成聽力受損。 � | ||
- | 衛教 耳機、隨身聽音量一定要放小聲 | ||
+ | ===Audibility curve=== | ||
+ | Figure 11.9 | ||
- | *Audibility curve | ||
- | **Figure 11.9 | ||
- | + | ===樂器為何不同音=== | |
- | + | *不同的樂器(吉他、巴森管、薩克斯風)即使演奏相同頻率的聲音,聽起來也是相當不同,原因即在於不同樂器所包含的泛音(timbre)不同 | |
- | + | *除了泛音不同 | |
- | 除了泛音不同 | + | **動態上也有所不同 |
- | 動態上也有所不同 | + | |
在2011年12月9日 (五) 21:25所做的修訂版本
目錄 |
Hearing的重要性
- 人類在各類辨識中常用的手段
- 聽,誰在講話?
- 聽,誰的拖鞋聲?
- 更廣範圍的定位
- 我們可以聽到360度的聲音
- 也可以聽到我們「看不到」的地方的聲音
聲音與情緒
- 粉筆與黑板急速磨擦
- 受不了
- 小溪流水聲
- 讓人平靜
- 知覺老師上課聲
- 讓人睡著
人、聲音與環境
- 與環境互動
- 先注意聲音、再察覺影像
- 與人互動
- 有聲音的互動效率較高
視力障礙者之聽覺
- 優於視力正常者
- 課本p.260 弱視者之經驗�
- 特殊案例:Helen Keller
- Blindness isolated her from things, but deafness isolated her from peoples.
波
Figure 11.1
Sine wave
Figure 11.2
波的能量
Figure 11.3
聲音的能量計算法
- dB = 20 X log (p/p0)
- p0 = 20 microPascals
- sound pressure level (SPL)
- 若p = 200
- 則 dB = 20 X log (p/p0)= 20log(200/20)= 20log(10) = 20
table11.1
- 與p0相對大小 dB
- 與p0相對大小 dB
1 0
10 20
100 40
1000 60
100000 100
1000000 120
10000000 140
聲音的頻率
Figure 11.4
複雜的聲音
Figure 11.5
missing fundamental
Figure 11.6
Loudness
Figure 11.7
- 音量每增加10分貝,我們會覺得音量增大了2倍
tone chroma
Figure 11.8
- 不同的tone height,相差了一個octave,同時頻率也呈倍數增加
頻率與音強
- 在2000~4000Hz是我們最敏感的頻段;中間兩條線是在不同頻率下,我們感受相同音量的強度;最上面一條線是讓我們感受到不舒服的強度,超過這個強度可能會造成聽力受損。
- 衛教
- 耳機、隨身聽音量一定要放小聲
Audibility curve
Figure 11.9
樂器為何不同音
- 不同的樂器(吉他、巴森管、薩克斯風)即使演奏相同頻率的聲音,聽起來也是相當不同,原因即在於不同樂器所包含的泛音(timbre)不同
- 除了泛音不同
- 動態上也有所不同
- Timbre
- Figure 11.10
- Ear
- Figure 11.11
- 外耳(outer ear)、中耳(middle ear)、及內耳(inner ear)。
- 中耳
- Figure 11.12
- 傳遞方式是由鼓膜
振動開始傳到三小 聽骨(槌骨malleus、 砧骨incus、鐙骨 stapes),再傳至 卵圓窗(oval window), 最後進入內耳
- 聲音在耳朶中的傳遞
- Figure 11.13
- 中耳能量放大原理
- Figure 11.14
- 內耳(cochlea耳蝸)
- Figure 11.15
- organ of Corti
- Figure 11.16
- hair cell
- 聽覺受器可分為兩種:inner hair cell與outer hair cell。前者數目較少,約3500個,卻有95%的聽覺細胞接受來自此的訊息;後者數目約12000個,卻只處理約5%的訊息。
- Figure 11.17
- cilia之活動與ion channels
- Figure 11.18
- 這個振動只有
100 picometer 相當於Eiffel Tower 頂端天 線搖1 cm如:圖11.19
- temporal theory
- Figure xx
- temporal theory(時間論)�frequency theory(頻率論)
volley theory(齊發論)
- place theory(位置論)
- Figure xx
- place theory 2
- von Bekesy
- Figure xx
- Bekesy's experiment
- peak of vibration(振動高峰)
- Figure xx
- Bekesy's traveling wave
- Figure xx
- Helmholtz / Bekesy
- Resonance
物理性上較「直覺」 生物結構上不可能 traveling wave 物理結構上較複雜 生物結構較「可能」
- basilar membrance
- tonotopic organization(音調排列結構)�
cochlear emissions(耳蝸傳射) airborne sound->movement of the eardrum-> movement of the ossicles -> movement of the oval window -> fluid-borne pressure wave -> displacement of basilar membrance -> stimulation fo hair cells
- 在耳蝸中如何表現音頻
- Figure 11.2
- 仔細看von Bekesy
- Figure 11.21
- Basilar membrane
- Figure 11.22
- Vibration of the basilar membrane
- Figure 11.23
- Envelope of the basilar membrane
- Figure 11.24
- Tonotopic map of the guinea pig cochlea
- Figure 11.25
- Frequency tuning curves of cat
- Figure 11.26
- Masking procedure
- Figure 11.27
- noise masking(噪音遮罩)
- auditory masking(聽覺遮罩)
幾個名詞 broadband noise(廣域噪音) bandpass noise(域帶噪音) center frequency(中央頻率) critical band(有效帶寬)
- bandpass noise
- Figure xx
- critical band
- Figure xx
- characteristic �frequency�特徵頻率
- Masking 實驗結果
- Figure 11.28
- 利用basilar membrane振動解釋masking
- Figure 11.29
- 複雜波的情況
- Figure 11.30
- outer hair cells的功能
- Figure 11.31
- cochlea amplifer
- outer hair cells的功能
- Figure 11.32
- phase locking and temporal coding
- Figure 11.33
- 性差與年齡差
- Figure 11.34
- 隨著年紀增長而對於高頻音較不敏感,男性的比例比女性高
- Presbycusis
- Noise-induced hearing loss
- Figure 11.35
- Auditory pathway
- Figure 11.36
- SONIC MG
Superior Olivary Nucleus Inferior Colliculus Medial Geniculate Nucleus
- Auditory cortex
- Figure 11.37
- Where / What pathway
- Figure 11.38
- 兩個腦傷的案例
- Figure 11.39
- 腦照影結果
- Figure 11.40
- pitch and brain
- Figure 11.41
- tonotopic map
- 從cochlea一直到A1,都有依頻率排列的特性
- 顳葉受損
- Figure 11.42
- fundamental frequency的腦內表現
- Figure 11.43
- neuroplasticity
- Figure 11.44
- 訓練猴子區辨兩個接近2500Hz的聲音,
訓練後發現猴子A1負責處理2500Hz的區域增加了
- shaping-by-training
- Figure 11.45
- 人工電子耳
- Figure 11.46