Invertible
出自KMU Wiki
(修訂版本間差異)
在2008年1月9日 (三) 11:39所做的修訂版本 (編輯) Itchen (對話 | 貢獻) (新頁面: A function f:A->B is said to be invertible if there exists a function g:b->A such that f(g(y)) = y for all y belong to B and g(f(x) = x for all x belong to A. f is invertible if a...) ←上一個 |
當前修訂版本 (2008年2月22日 (五) 17:55) (編輯) (撤銷) Itchen (對話 | 貢獻) |
||
第3行: | 第3行: | ||
f(g(y)) = y for all y belong to B and g(f(x) = x for all x belong to A. | f(g(y)) = y for all y belong to B and g(f(x) = x for all x belong to A. | ||
- | f is invertible if and only if f is both one-to-one and onto. | + | |
+ | f is invertible if and only if f is both one-to-one and onto. | ||
+ | [[Category:Linear Algebra]] |
當前修訂版本
A function f:A->B is said to be invertible if there exists a function g:b->A such that
f(g(y)) = y for all y belong to B and g(f(x) = x for all x belong to A.
f is invertible if and only if f is both one-to-one and onto.